

Numerical Algorithms GroupMathematics and technology for optimized performance

Software Issues in Wavelet Analysis of Financial Data

Robert Tong

Results Matter. Trust NAG.

Overview

- Why Use Wavelets?
- **Wavelet transforms**
- Multi-Resolution Analysis
- Software implementations and algorithms

STATISTICS

- Choosing a wavelet method
- **Some Applications**

Why Use Wavelets?

Signal → stream of data in time
l

To analyse structure of time series:

- **DFT** (Discrete Fourier Transform) → frequency representation

STET (Short Time Fourier Transform, Gaber) → uses a time w
- **STFT** (Short Time Fourier Transform, Gabor) \rightarrow uses a time window to give
Incalisation in time imposes a scale, which leads to aliasing of components localisation in time – imposes a scale which leads to aliasing of components
- **Wavelet** Transform → shifted and scaled basis functions allow localisation in time and frequency
- **Uncertainty principle**: cannot achieve simultaneous time and frequency resolution

Wavelet Transforms

wavelet,

Decompose time series, by convol \boldsymbol{a} **(** \boldsymbol{t} **)on with dilated and translated mother** $\psi(t)$

eta atteresservidentekt-fyze- cottente tesz)
Universitatelent- krats-information /
Universitatelent-krats-information /

Continuous (CWT)

Discrete (DWT)

$$
d(u,s)=\int\limits_{-\infty}^{\infty}x(t)\psi_{u,s}(t)dt,
$$

$$
\psi_{u,s}(t) = \frac{1}{\sqrt{s}} \psi\left(\frac{t-u}{s}\right) \qquad \text{with } D-\text{down-sampling}
$$

e.g. Morlet wavelet,

$$
\psi(t) = \frac{1}{\sqrt{2\pi}}e^{-ikt}e^{-t^2/2}
$$

Results Matter. Trust NAG.

Filter pair: G – high passH – low pass

Wavelet Transforms (2)

CWT requires:

$$
\int_{-\infty}^{\infty} \psi(t) dt = 0 \qquad \qquad \int_{-\infty}^{\infty} |\psi(t)|^2 dt = 1
$$

 $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(0$

DWT (orthogonal filter pair) requires:

$$
\sum_{n} h_n h_{n+2j} = 0, \qquad \sum_{n} h_n^2 = 1, \qquad g_n = (-1)^n h_{1-n}
$$

$$
\sum_{n} g_n g_{n+2j} = 0, \qquad \sum_{n} g_n^2 = 1, \qquad \sum_{n} h_n g_{n+2j} = 0
$$
Results Matter. Trust NAG.

5

Wavelet Functions

Morlet (k=5) Daubechies: a Gaussian 3rd derivative **Caussian 3rd** 1

Results Matter. Trust NAG.

esmies™fintent-type - cottente (text)
"krykesheat" arats - arZnavigation /
"time heat" brats - argitalization /

nag

OVZEK 41

6

Multi-Resolution AnalysisDiscrete Wavelet Transform

OVZEK41

カミリクスノロミ

Relation between Continuous and Discrete Transforms

 $-15 - 3$

$$
\varphi = H \varphi ,
$$

$$
\varphi(t) = \sqrt{2} \sum_{j} h_j \varphi(2t - j)
$$

Mother wavelet:

 \blacktriangleright Scaling function is fixed point of H:

$$
\psi(t) = \sqrt{2} \sum_{j} g_j \varphi(2t - j)
$$

Time series:

Τ

$$
\exp\left(x(t)\right) = \sum_{k} c^J \varphi_j(t-2^{-J}k)
$$

$$
\sum_{k} \text{CWT detail coefficient} x(t) = \sum_{k} c_k^R \varphi_R(t - 2^{-R}k) + \sum_{j=R}^{J-1} d_k^j \psi_j(t - 2^{-j}k)
$$

$$
d_k^j = \int \psi_j(t - 2^{-j}k)x(t)dt
$$

Results Matter. Trust NAG.

 $0MZ \vdash$

Stationary DWT (SDWT)

- п Note: DWT is **NOT** translation invariant choosing **odd** entries in series, in place of **even** ones when downsampling gives a different orthogonal transformation
- DWT MRA choice of shift at each level gives multiple possible sets \blacksquare of coefficients
- SDWT **NO** down-sampling, \blacksquare

pad filters with zeros in MRA includes all DWT MRA possibilities translation invariant, but increases storagecan relate wavelet coefficients to data

Translation invariant SDWT

contener feet.

allierati

o

ATALST CURRANY I gallion

Choosing a Wavelet Method

\Box CWT

 Continuous transformVisualise as surface

DWT/MRA

 Discrete, multiresolutionEfficient storage of signal

\Box Matching Pursuit

Adapt basis to dataAt each level of MRA choose waveform to minimise residual passed to next level

SDWT

 Translation invariant No down-sampling

CWT: how can quantitative information be obtained?

content#"text

Results Matter. Trust NAG.

12

 $0MZFK$

CWT (2)

- ◻ Find common normalisation for wavelet spectrum - ensure wavelet has unit energy at each scale
- □ Choice of wavelet:

non-orthogonal is useful for time series, but highly redundant

 \Box Choice of scales:

can use arbitrary set of scales to show structure

 \Box Cone of influence:

for finite length series defines where edge effects occur

□ Relate to Fourier frequency

e.g. see Torrence and Compo (1998)

Software implementation and algorithms

Ξ Reproducibility is desirable –

 algorithms precisely defined to allow independent implementations –Taswell (1998), c.f. Buckheit and Donoho (1995)

ο Edge effects –

> contaminate ends of transform for finite signals – various end conditions used to reduce their effect: periodic extension, reflection, zero-padding …

п CWT –

> implement quadrature and convolution in time domain or else convolution with Fourier Transform of wavelet in frequency domain

 \blacksquare Parallel implementation

Implementation and algorithms (2)

- \blacksquare Definition of forward and inverse transforms – DWT orthogonality conditions allow for different choices of forward and inverse transforms
- Pre-processing of data –

data may need cleaning, interpolation to produce homogeneous series, …

Applications

- De-noising
- **Identifying seasonality**

 $\frac{1}{2}$

- Self-similarity
- Prediction
- Estimation of variance

De-Noising

- \blacksquare Transform data into wavelet domain
- \blacksquare Apply thresholding – suppress smallest coefficients
- \blacksquare Transform back

Use:

DWT for efficient storage – SDWT to align with data De-noised data can help modelling of underlying structuree.g. Capobianco (1997) – analysis of Nikkei indexDonoho and Johnstone (1998)

Identifying Seasonality

- Apply SDWT to data
- Wavelet detail coefficients at a given level capture a particular range of frequencies
- **Identify detail coefficients carrying seasonal periodicity**
- Filter out seasonal effects
- e.g. Gencay *et al.* (2001) for application to FX returns

Self-similarity

 \blacksquare Scalogram represents energy of series in the wavelet coefficients e.g. Jamdee and Los (2004) use Morlet wavelet CWT for analysis of interest rate series and calculation of Hurst exponent

Prediction

- Apply backward looking wavelet MRA to time series \blacksquare
- \blacksquare Use wavelet coefficients as input to a neural network model for prediction
- e.g. Renaud *et al.* (2004)

Estimation of Variance

For DWT coefficients wSDWT coefficients w^s

$$
\|x\|^2 = \|w\|^2 = \|w^s\|^2
$$

straar (1999)
Lydystin (1999)
Litteratur (1999)

Since,

$$
||x||^2 \propto Var(x)
$$

The wavelet transform provides an alternative representation of the variance (Percival, 1995)

Summary

- 1) Wavelet transforms provide a rigorous framework for data analysis in time and frequency
- 2) Software implementations vary in their choices of transform definitions
- 3) Wavelet analysis provides an important tool for determining the structure of time series arising in finance