nag

Numerical Algorithms Group Mathematics and technology for optimized performance

Software Issues in Wavelet Analysis of Financial Data

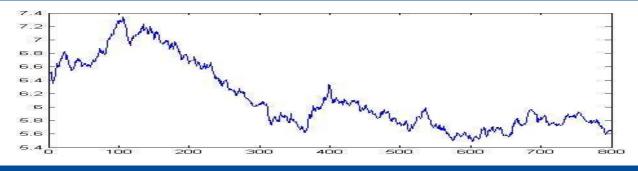
Robert Tong

Results Matter. Trust NAG.

Overview

- Why Use Wavelets?
- Wavelet transforms
- Multi-Resolution Analysis
- Software implementations and algorithms
- Choosing a wavelet method
- Some Applications

Why Use Wavelets?



Signal \rightarrow stream of data in time

To analyse structure of time series:

- **DFT** (Discrete Fourier Transform) \rightarrow frequency representation
- **STFT** (Short Time Fourier Transform, Gabor) \rightarrow uses a time window to give localisation in time imposes a scale which leads to aliasing of components
- Wavelet Transform → shifted and scaled basis functions allow localisation in time and frequency
- Uncertainty principle: cannot achieve simultaneous time and frequency resolution

Wavelet Transforms

Decompose time series, wavelet, by convolution with dilated and translated mother $\Psi(t)$

Stores with Content Tree contents Test

Discrete (DWT)

$$d(u,s) = \int_{-\infty}^{\infty} x(t) \psi_{u,s}(t) dt,$$

$$\psi_{u,s}(t) = \frac{1}{\sqrt{s}}\psi\left(\frac{t-u}{s}\right)$$

e.g. Morlet wavelet,

$$\psi(t) = \frac{1}{\sqrt{2\pi}} e^{-ikt} e^{-t^2/2}$$

Results Matter. Trust NAG.

Filter pair: G – high pass H – low pass with D – down-sampling

ONZEKG

Wavelet Transforms (2)

• CWT requires:

$$\int_{-\infty}^{\infty} \psi(t) dt = 0 \qquad \qquad \int_{-\infty}^{\infty} |\psi(t)|^2 dt = 1$$

22/03 22/03

ONZEKGI

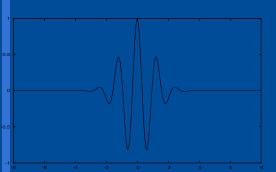
5

• DWT (orthogonal filter pair) requires:

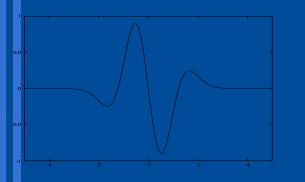
 $\sum_{n} h_{n} h_{n+2j} = 0, \qquad \sum_{n} h_{n}^{2} = 1, \qquad g_{n} = (-1)^{n} h_{1-n}$ $\sum_{n} g_{n} g_{n+2j} = 0, \qquad \sum_{n} g_{n}^{2} = 1, \qquad \sum_{n} h_{n} g_{n+2j} = 0$ Results Matter. Trust NAG.

Wavelet Functions

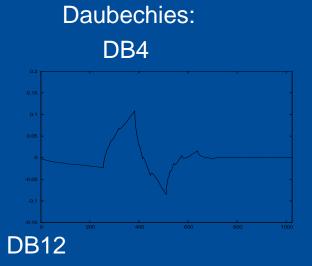
Morlet (k=5)



Gaussian 3rd derivative

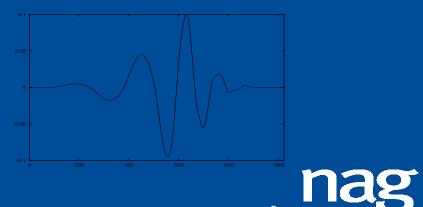


Results Matter. Trust NAG.



ONZEKGI

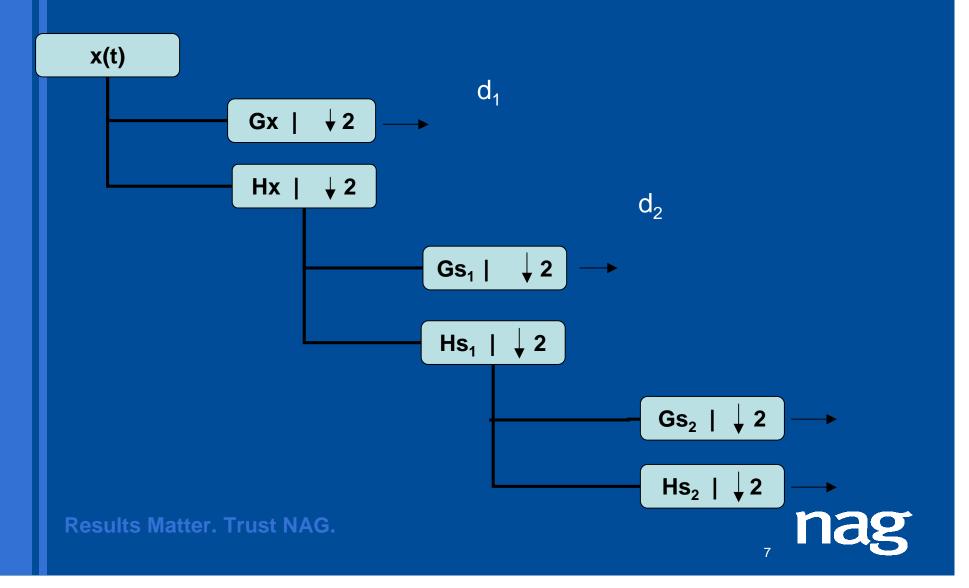
TOTAL CONTRACT TANK



6

Multi-Resolution Analysis Discrete Wavelet Transform

15-1



ONZEKA

03/22/03

Relation between *Continuous* and *Discrete* Transforms

-15-6

$$\varphi = H \varphi$$

$$\varphi(t) = \sqrt{2} \sum_{j} h_{j} \varphi(2t - j)$$

$$\psi(t) = \sqrt{2} \sum_{j} g_{j} \varphi(2t - j)$$

Time series:

trang & Nguyen, 1997)
$$x(t) = \sum_{k} c_{k}^{J} \varphi_{J}(t - 2^{-J}k)$$

CVVT detail coeff
$$x(t) = \sum_{k} c_k^R \varphi_R(t - 2^{-R}k) + \sum_{j=R}^{J-1} d_k^j \psi_j(t - 2^{-j}k)$$

$$d_k^{j} = \int \psi_j(t - 2^{-j}k) x(t) dt$$

Results Matter. Trust NAG

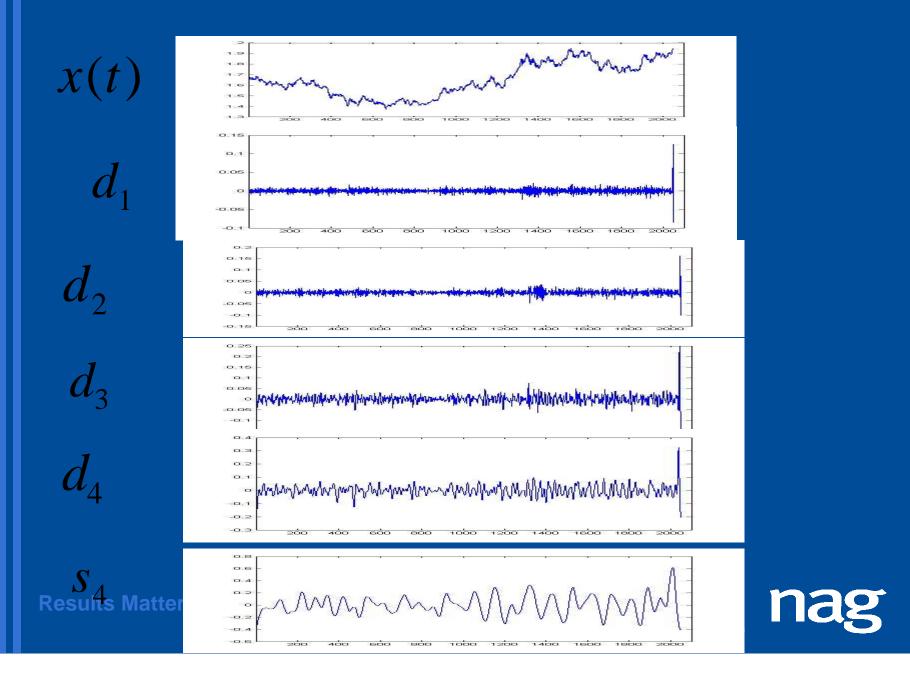
OVZE

Stationary DWT (SDWT)

- Note: DWT is NOT translation invariant choosing odd entries in series, in place of even ones when downsampling gives a different orthogonal transformation
- DWT MRA choice of shift at each level gives multiple possible sets of coefficients
- SDWT NO down-sampling,

pad filters with zeros in MRA includes all DWT MRA possibilities translation invariant, but increases storage can relate wavelet coefficients to data

Translation invariant SDWT



SOLTENSE TERME

ONZEKGI

Choosing a Wavelet Method

CWT

Continuous transform Visualise as surface

DWT/MRA

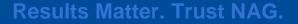
Discrete, multiresolution Efficient storage of signal

Matching Pursuit

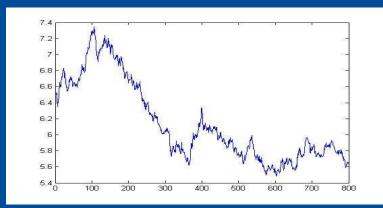
Adapt basis to data At each level of MRA choose waveform to minimise residual passed to next level

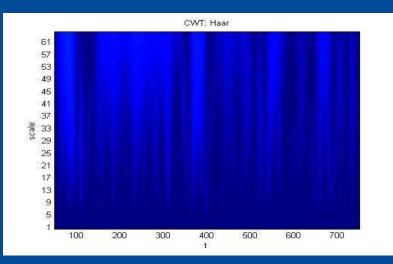
SDWT

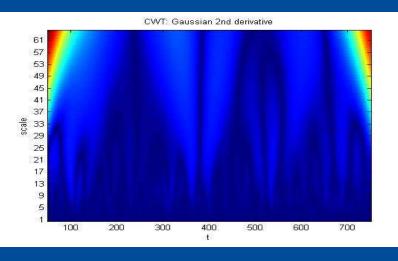
Translation invariant No down-sampling

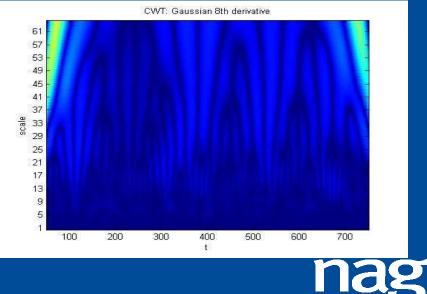


CWT: how can quantitative information be obtained?









Results Matter. Trust NAG.

12

ONZEKGI

CWT (2)

- Find common normalisation for wavelet spectrum ensure wavelet has unit energy at each scale
- Choice of wavelet:

non-orthogonal is useful for time series, but highly redundant

- Choice of scales:
 can use arbitrary set of scales to show structure
- □ Cone of influence:

for finite length series defines where edge effects occur

Relate to Fourier frequency

e.g. see Torrence and Compo (1998)

Software implementation and algorithms

Reproducibility is desirable –

algorithms precisely defined to allow independent implementations – Taswell (1998), *c.f.* Buckheit and Donoho (1995)

• Edge effects –

contaminate ends of transform for finite signals – various end conditions used to reduce their effect: periodic extension, reflection, zero-padding ...

• CWT –

implement quadrature and convolution in time domain or else convolution with Fourier Transform of wavelet in frequency domain

Parallel implementation

Implementation and algorithms (2)

- Definition of forward and inverse transforms –
 DWT orthogonality conditions allow for different choices of forward and inverse transforms
- Pre-processing of data –

data may need cleaning, interpolation to produce homogeneous series, ...

Applications

De-noising
Identifying seasonality
Self-similarity
Prediction
Estimation of variance

ALC: A CONTRACTOR OF ALC

De-Noising

- Transform data into wavelet domain
- Apply thresholding suppress *smallest* coefficients
- Transform back

Use:

DWT for efficient storage – SDWT to align with data De-noised data can help modelling of underlying structure e.g. Capobianco (1997) – analysis of Nikkei index Donoho and Johnstone (1998)

Identifying Seasonality

- Apply SDWT to data
- Wavelet detail coefficients at a given level capture a particular range of frequencies
- Identify detail coefficients carrying seasonal periodicity
- Filter out seasonal effects
- e.g. Gencay et al. (2001) for application to FX returns

Self-similarity

Scalogram represents energy of series in the wavelet coefficients
 e.g. Jamdee and Los (2004) use Morlet wavelet CWT for analysis of interest rate series and calculation of Hurst exponent

Prediction

- Apply backward looking wavelet MRA to time series
- Use wavelet coefficients as input to a neural network model for prediction
- e.g. Renaud et al. (2004)

Estimation of Variance

For DWT coefficients *w* SDWT coefficients *w*^s

$$||x||^2 = ||w||^2 = ||w^s||^2$$

Since,

$$||x||^2 \propto Var(x)$$

The wavelet transform provides an alternative representation of the variance (Percival, 1995)

Summary

- 1) Wavelet transforms provide a rigorous framework for data analysis in time and frequency
- 2) Software implementations vary in their choices of transform definitions
- 3) Wavelet analysis provides an important tool for determining the structure of time series arising in finance